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Let W := e- Q
, where Q: IR ~ IR is even, sufficiently smooth, and of faster than

polynomial growth at infinity. We establish L p Markov-Bernstein inequalities for
Erdos weights; for example,

liP' WII LpIO<)'::; CQ'(an)11 PWII Lpll<)

and

II (P'W)(x) 11 - (~y 1

1

/

2

11 LpIO<)'::; C~ II PWII LpIO<l'

for all polynomials P of degree at most nand p E (0, OCJ). Here an is the
Mhaskar-Rahmanov-Saff number for W. More general inequalities with L p norms
replaced by integrals of convex functions are established, as well as estimates of L p

Christoffel functions. © 1991 Academic Press, Inc.

1. INTRODUCTION

In recent years, the subject of weighted approximation associated with
weights Won IR has received considerable attention [1, 13]. An essential
ingredient of this theory is Markov-Bernstein inequalities, which relate the
size of rw to the size of PW, for polynomials P. Typically, the weights
considered have been Freud weights, that is, W: = e Q, where Q is even,
and of polynomial growth at infinity. The archetypal Freud weights are
W(x):= exp( - Ixl"), ct>O.

The case where Q is of faster than polynomial growth at infinity was first
treated by Erdos in a related context [2J, and so for such Q, W = e- Q is
called an Erdos weight. The approximation theory for Erdos weights has
received relatively little attention, primarily because the necessary estimates
(involving Christoffel functions and Markov-Bernstein inequalities) were
lacking.

Recent progress has partly filled in this gap [3, 4, 7, 11]. It is the aim
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302 LUBINSKY AND MTHEMBU

of this paper to exploit this to prove Markov~Bernstein inequalities and
Christoffel function estimates in Lp and more general spaces, with a view
to ultimately establishing Jackson-Bernstein approximation theorems.

Let W: = e - Q be a sufficiently smooth Erdos weight, and for u > 0, let
au be the uth Mhaskar-Rahmanov-Saff number for W, namely the root of
the equation

(1.1 )

The significance of au is the Mhaskar-Saff identity

for all polynomials P of degree ~ n.

(1.2 )

We shall show that for 0 <p < 00, and all polynomials of degree at most n,

and

Here C is independent of nand P, and (in contrast to the Freud case),
Q'(an)/(n/an) increases to infinity (but more slowly than any power of n) as
n -> 00.

In particular, the results apply to weights such as

where k ~ 1, rt. > 1, and eXPk denotes the kth iterated exponential. To those
familiar with Freud weights, it is worth noting that Erdos weights are
similar to weights on a finite interval in that they display "endpoint effects"
that complicate matters.

Our results are stated in Section 2. Section 3 contains preliminaries and
a proof of the L p Christoffel function estimates. Section 4 contains the
proof of the Bernstein inequalities.

2. STATEMENT OF RESULTS

Throughout .?J,. denotes the class of real polynomials of degree at most
n. Furthermore, C, C1 , C2 , ••• , denote positive constants independent of n,
P e!/Jn , and x E IR. The same symbol C or Cj does not necessarily indicate
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the same constant in different occurrences. We use ~ as in [12]: We write
cn~dn if for some C 1 , C 2 >0,

n large enough.

Similarly we can define f(x) ~ g(x).
Following is a suitable class of Erdos weights:

DEFINITION 2.1. Let W: = e - Q, where Q is even, continuous in IR, Q'"
exists in (0, 00), and Q'(x»O, XE(O, 00). Let

d
T(x):= 1+xQ"(x)jQ'(x) = dx (xQ'(x))jQ'(x) (2.1)

be increasing in (0, (0) with

lim T(x) > 1,
X--J>O+

lim T(x) = 00,
x- 00

and for each c; > 0,

(2.2)

(2.3 )

T(x) = D(Q'(x)'),

Assume further that

Q"(x)jQ'(x) ~ Q'(x)jQ(x),

and for some C> 0,

IQ"'(x)ljQ'(x):::::; C{ Q'(x)jQ(X)}2,

x ~ 00.

x large enough,

x large enough.

(2.4 )

(2.5)

(2.6)

Then we say that W is an Erdos weight of class 3, and write WE SE*(3).

Remarks. (a) Some of the results do not require of Wall of the above.

(b) It is (2.3) that forces Q to grow faster than any polynomial and
so W to be an Erdos weight in the usual sense. By contrast for the Freud
weight W(x) = exp( - Ix n, T(x) == a.

(c) The condition (2.4) is a rather weak regularity condition, for one
typically has for each c; > 0,

T(x) = D( {log Q'(x)} 1 +E), x ~ 00.
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(d) The class 8£*(3) coincides with that in [11] and is a subclass of
8£(3) of [3]. It contains the most important Erdos weights

k ~ 1, ex> 1, where

eXPk(X):= exp(exp(·· ·exp(x))) (k times).

With extra effort, one can drop (2.2) and so also allow ex> O. Another
example of a weight in 8£*(3) is

W(x) := exp( -exp {log(A + x 2
) }~),

ex> 1, A large enough.

An important special case of our results is:

THEOREM 2.2. Let WE 8£*(3). For n ~ 1, let an be the positive root of
(1.1), and let

XEllt (2.7)

Let O<p< 00 and /3>0. Then for n~ 1 and PEfJ>",

In particular,

and

(2.9)

II
(P'W)(x) /1 - (~)211!211 ~ c!!... II PWII Lp(~)' (2.10)

aPn Lp(~) an

We remark that

n~ 1, (2.11 )

so for "most x," (2.10) is superior to (2.9). One may think of (2.10) as an
L p Bernstein inequality and of (2.9) as an L p Markov inequality: Their
classical cousins on [ -1, 1] are respectively [8]
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In this connection, it is instructive to note that the function cpAx/apn)1/2
plays much the same role for Erdos weights, as does

xE[-1,1J (2.12 )

for weights on [ -1, 1]. By contrast, for Freud weights, there is no need for
such a factor, as T(an)~ 1, and Q'(an)~ n/an-

The L oo analogue of (2.9) was obtained in [3, Theorem 2.6J, [4, Theo
rem 1.3J and shown to be sharp in the sense that

Nikolskii inequalities and (2.10) for p = r:tJ were obtained in [11,
Theorem 1.5]. We believe that Theorem 2.2 is sharp with respect to the
rate of growth of n.

We deduce Theorem 2.2 from

THEOREM 2.3. Let WESE*(3) and {CPn};;C~o be as in (2.7). Let
1/1 : [0, (0) - [0, r:tJ) be continuous, convex, non-negative, and non-decreasing
with 1/1(0+ ) = 1/1(0) = O. Let 0 <p < 00 and f3 > O. Then for n? 1 and P E fJJn,

f~oo 1/I({IP'WI(X)q>n(~JI/2f)dx~cd~00 1/1 ({C2;n IPWI(x)f)dX.

(2.13 )

A crucial role in our proofs is played by the following Lp-Christoffel
function estimate:

THEOREM 2.4. Assume the hypotheses of Theorem 2.3. Fix I? 1. Then for
P E?/1n and x E IR,

( ( X) 1/2) n f00

1/1 IPWI(x)PCPn apn ~Clan -00 I/I(C2 IPWI(t)P)dt. (2.14)

Our method of proof is similar to that used in [6J or [8J for weights
on [ -1, 1]. We remark that Theorems 2.2 and 2.3 remain valid if for some
fixed I? 1, we allow P E ?/1n'
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3. PROOF OF THEOREM 2.4

Throughout the sequel, we assume that W=e- Q ESE*(3) and that
au=au(Q) is the root of (1.1) for u>O. Furthermore ljJ: [0, oo)~ [0, (0)
denotes a continuous, convex, non-negative, and non-decreasing function
with ljJ(O+ )=ljJ(O)=O. We shall need several lemmas, the first listing
elementary estimates for an, T(an), etc.:

LEMMA 3.1. (i) Given I: > 0,

and n~ 00. (3.1 )

(ii) Given distinct iX, f3 > 0, we have

lim axn/apn = 1,
n~ 00

and

(3.2)

(3.3 )

(iii) For n ~ 1,

n~ 00. (3.4 )

(3.5)

(iv) Given fixed k, I ~ 1, and iX, f3 > 0, we have uniformly for x E IR and
n~ 1,

CfJkn (~) ~ CfJln (~).
axn apn

(3.6)

Proof (i) First, an = O(n") is (3.19) in [3, p.19] or (2.20) in [4,
p. 201]. The relation

follows from (2.25) in [4, p. 203] (note that x= Tthere).

(ii) First, (3.2) follows from (3.44) in [3, p.23]. Second, (3.3)
follows from (3.18) in [3, p. 19]. Next, (3.4) is (2.8) in [7, p.260].

(iii) This is (3.15) in [3, p. 18] for j= 1.
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(iv) Recall first the definition (2.7) of ({In' Then uniformly for XE IR
and n?: 1,

({Jkn C:J = \1- C:J21 + T(akn)-l

=II-C:J 2

+C:J 2

{I -e::y}/ + T(akn)-I

:( 11_(~)21 + C 1~12 T(aln)-l + CT(aln)-l
a{in a{in

(by (3.4) and (3.2))

:( C1{I I - C:J 21 + T(aIn) - I} + C [/C:J2- 1I+ 1] T( aIn) - I

:( C2 {II -C:J 2

!+ T(aln)-l} = C2 ({Jln (~J. I

Next, we need an Lp infinite-finite range inequality:

LEMMA 3.2. Let 0< p:( lIJ, and let

(3.7)

Then there exists C> 0, such that for n?: I and P EfJJ>n,

In particular, given r> I, we have for n?: n1 and P E i?J",

(3.9)

Proof The inequality (3.8) is a special case of Theorem 5.2 in [3,
p. 46]. Then (3.9) follows from the fact that (see (3.4))

n large enough, by (3.1). I

We shall use the above to prove an infinite-finite range inequality for
integrals involving a convex function t/J instead of just pth powers. First, we
need:
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LEMMA 3.3 (Nikolskii Inequality). Let O<p< 00. For n~ 1 and PE~,

(3.10)

Proof See Theorem 1.4 in [11]. I

LEMMA 3.4 (infinite-finite range inequality). Let f3 E IR, let I'f > 0, s> 1,
and p > O. Then there exists no such that for n ~ no, PE~, and

(a)

(b)

XE IR,

1Il/J(gP)11 Lro(~) = 11l/J(gP)11 La)[ -Osn, Osn];

foo l/J(gP(x))dx~(I+a;l)rn l/J(gP(x))dx.
-00 -~

(3.11 )

(3.12 )

(3.13 )

Proof (a) In view of the continuity of l/J and the compactness of
{g(X):XEIR}, we note that the sup's in (3.12) are attained. Furthermore,
we see that (3.12) is equivalent to

which in turn is equivalent to

(3.14 )

To prove (3.14), we note first that

this being a consequence of the fact that

(3.16 )

Next, choose () > 0 such that 1+ () < s. Let <u>denote the greatest integer
~u. Then as

the Mhaskar-Saff identity (1.2) ensures that for Ix I~ asn ,
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so that

g(x) = IPWI(x) ({In(x/ann)P

::::;; (an ,:rn» <bn> II PWII L
oo

[ -an.an] ({In(x/ann)p

(
an+<bn»<bn> )IPI (I X I)2 IP1

::::;;C3 Ixl II gIILd-asn,am] T(an --;;:

(by (3.15))

Now in view of (3.4),

::::;; (1- Cs/T(an))C6n T(an)IPI

::::;; exp( - C7 n/T(an)+ IPI log T(an)) ~ 0,

as n ~ 00, in view of (3.1). Thus,

309

(3.17 )

for Ix I~ asn and n ~ no. Then (3.14) follows.

(b) Let 1 + b < s' < s. We apply (3.17) to tL P(t), where L is a fixed
positive integer chosen so that Lp ~ 4, and with s' replacing s. Then (3.17)
yields, for Ix I> as'(n + L)'

Using (3.6) and the fact that

640/65/3-5
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we obtain, for Ix I~ asn ,

LUBINSKY AND MTHEMBU

(
a )<J(n+L)/2

g(x) ~ C g (n+I~~1 +J) Ixl- L T(an)/PI

x max {I tL(PW)(t)1 : It I~an+d

~ C
9
(a(n+I~ll + J)) <J(n + L)/2 IX I- L T(an)IPI {:n T(an)1/2 riP

x II tL(PW)(t)11 Lp [ -a2n,a2n]
(by Lemma 3.3 and (3.9) of Lemma 3.2)

( )

<J(n+L)/2
,,::. C a(n + L)(l + J) CII

"" 10 Ixl n

[f a2n /( t )L ( t )P/P J1/Px - (PW)(t) CfJn - (1 + (xt)2)-2 dt ,
-a2n a2n a~n

for n ~ no, where we have used (3.1) to estimate a2n and T(an) and have
used Lp ~ 4. Now

(3.18 )

as Ix I~ asn ' Furthermore, exactly as before (3.17), we see that for any fixed
A E~, and uniformly for Ix I~ asn '

as n ~ 00.

Hence for n ~ no,

Applying Jensen's inequality, (see, for example, [14, p.24]) yields for
Ixl ~ asn ,
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Now as t/t is convex, we have, for u E [0, 00) and 0 ~ y ~ 1,

t/t(uy) = t/t(uy +0(1- y)) ~ t/t(u) y + t/t(0)(1- y) = t/t(u) y.

Applying this and (3.18) yields

Since

f
Ixl 2foo U

-----=-2-::2 dx ="2 2)2 du
Ixl;;>am (1 +(xt) ) t am lt!(1+U

and since Lp ~ 4, we obtain, on integrating for Ix I~ asn ,

Then (3.13) follows. I

311

(3.19 )

LEMMA 3.5. Let ~ E IR and p, A > O. There exists Rn E ,o/Jn _ 1, n ~ 1, such
that uniformly for n ~ 1 and Ix I~ Aapn'

(3.20)

Proof We remark that we can actually choose Rn to be of degree O(n C
)

for each e > O. Let

with branches chosen so that hn(z) is positive for z E IR. The branchpoints
lie where

or equivalently,
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In any event, we may assume that the plane is cut so that hn(z) is analytic
in the strip

for n ~ no. Let Fn be the ellipse with foci at ±A, and minor semi-axis (that
is, intercept on the positive y-axis) equal to

m := !(Pn_~)
n 2 A Pn'

where

Then

n --+ 00.

In particular, for n large enough, !/" contains F n , and for some C> 0,

max Ihn(t)±l/ ~ CT(an)/PI.
tEFn

Further, if Tn(z) denotes the usual Chebyshev polynomial of degree n on
[ -1, 1], then

min ITn(t/A)/ ~ C(Pn/At ~ exp(C2n/T(an)2)
tErn

n large enough, by (3.1). Now, let Ln(z) E ~ _ I be the Lagrange interpola
tion polynomial to hnCz) at the zeros of Tn(z/A). By the usual Hermite
error formula, we have, for ZE [-A, A],

IL (z)/h (z)-I( = 1_1 f hn{t) Tn(z/A)~I
n n 2ni Tn t-z Tn{t/A) hn(z)

~ C2 T(a n )2 IP1 e- n1
/
2
/min It - z I

tErn

n --+ <XJ, by (3.1). Letting
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we have, for n?3 no and Ix I~ Aapn ,

Since qJn ~ 1, n < no, we can choose Rn== 1 for n < no· I

We can now prove a special case of Theorem 2.4:

313

LEMMA 3.6. Let P>O, 1?31, and A>O. Then for n?31, PE&1n, and
Ixl ~Aa3/n,

n fal/n

IPWI(xV qJn(x/an)1/2 ~ C - IPWIP (t) dt.
an -a3/n

Proof If An(W2
, x) denotes the nth Christoffel function for W2

,

then Theorem 1.2 in [7, p. 258] shows that

sup A;l( W2, x) W2(x) [1 1- (!-)21
1/2

+ T(a n )-1/2] ~ C1!!..-.
XE~ an an

Since uniformly for x E ~ and n ?3 1

( X)1/2 [I (X)21 1/2 ]qJn an ~ 1- an +T(an)-1/2,

we obtain

(3.21)

(3.22)

Then the definition of the Christoffel function ensures that, for each
P E f!J" _1 and x E ~,

(3.23 )

Now let us choose a positive integer k such that 2k?3 p. Note that
Wk

E 5£*(3) i;lnd that ank( Wk
) (the nkth Mhaskar-Rahmanov-Saff num

ber for Wk
) equals an ( W). This is a direct consequence of (1.1).
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Let P E ~In _ I. Applying (3.23) to W
k and p k

E ~Ink _ I yields, for x E IR,

(

X )1/2 21nk fOO
(PW)2k (x) ({J21n - ~c- (PWfk (t) dt,

a 21n a 21n- 00

and by (3.6) and (3.9),

(3.24 )

for P E ~In and x E IR. Next, by Lemma 3.5, we can find R n E &:. _I, n ~ 1,
such that

Applying (3.24) to PRn Ef!}2In_1> where PE~n, yields, for Ixl ~Aa3In,

(

X )(2k- P )/(2PJ + 1/2
(PW)2k (x) ({In -

an

n falln ( t )(2k- P )/(2P )
~ C I - (PW)2k (t) ({In - dt.

an -alln an

Then

Hence (3.21). I
Recall that if

XE(-I,I),

is the Chebyshev weight, then Po(v, x) := n - 1/2, and

n~ 1,
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are the associated orthonormal polynomials. The nth kernel function is

n-I
Kn(v, x, t):= I Pj(V' X)Pj(V' t),

j=O

and it satisfies

Kn(v, x, x) '" n, n ~ 1, x E [ -1, 1],

IKAv, x, t)1 ::;; Cn, n ~ 1, x, t E [ -1, 1],

f I K~(v, x, t) v(t) dt =Kn(v, x, x),

(3.25 )

(3.26)

(3.27)

and

rK~(v, x, t) dt"'n(11-x2
1
1/2+n- 1

),
-I

n ~ 1, X E [ - 1, 1]. (3.28)

For (3.25) and (3.26), see [12, p. 108]. Of course (3.27) is a direct conse
quence of the orthonormality relations. For (3.28), see Theorem 2.2 in [5].
Using Lemma 3.6, we can now prove:

LEMMA 3.7. Let P> 0, I ~ 1, A ~ 1, and 0 < s < A. Let L be the least
integer ~ 21p, and let

p:= 3(1+ L).

(a) Then for n ~ 1, P E ~n, and Ix I::;; Aapn ,

(3.29)

IPWIP(X)q>n(~)1/2~~rpn IPW1P(t)K~(V,~,-t-)dt. (3.30)
an nan -a~ Aa~ Aa~

(b) For n~ 1, PE~n, and Ixl ::;;sa pn ,

IPWIP (x) qJn (:J 1/2

rapn
(CIIPWI(t))PK~(v'AX '-At)dt

-Aapn apn a pn

~ rapn K~ (v,~, _t_) dt
- Aapn Aapn Aapn

Proof (a) We apply Lemma 3.6 to

L ( x t)P(t) K n v, A-' A- E~n+Ln,
a pn a pn

(3.31 )
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for fixed Ix I~ AOprJ" For Ix I~ Aopn , Lemma 3.6 yields

by (3.26). Dividing by K~P(v, x/Aopn , x/Aopn ) and using (3.25) yields (3.30).

(b) Now

f

Aapn
( x t) fl ( X )K~ v, -A'-A dt=Ao pn K~ v, -A ,U du--onn,

- Aapn apn 0 pn - 1 apn
(3.32 )

by (3.28) for Ixl ~sopn, which implies Ix/(Aapn)1 ~s/A < 1. Then (3.30)
yields (3.31). I

Proof of Theorem 2.4. Applying Jensen's inequality to (3.31) (and using
(3.6)) yields, for Ixl ~sapn,

!/t (I PWI P(x) CPn C:J1
/
2)

f
Aapn

( x t). !/t[(C I 1PWI(t)Y] K~ v, -A,- dt
-Aapn Opn AOpn

~ fAapn
( x t)K~ v, --, -- dt

-Aapn Aapn AOpn

n fAapn

~ C2 - t/J[(C 1 IPWI(t))P] dt =: J,
an - Aapn

by (3.26) and (3.32). We may choose A> 1 and s = 1. Then, we have, as
p~31,

max l/J [I PWIP (x) CPn (~)I/2J ~ J.
Ixl'i; a31n °pn

By Lemma 3.4(a), we have

max l/J [I PWIP (x) CPn (~)1/2J ~J. I
XEIR 0pn
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4. PROOF OF THEOREMS 2.2 AND 2.3
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LEMMA 4.1. Let ex ~~. Then there exist C> 0 and no such that for n ~ no
and PEflJ",

(
X)" n (X)"-1/2max IP' WI(x) CPn - :( C - max IPWI(x) CPn - .

XEIRI an an XEIRI an

In particular,

IIP'WIILoo(IRI):(CI; T(an)1/21IPWIILdlRl)'
n

(4.1 )

(4.2)

Proof First, (4.1) is Theorem 1.5 in [11]. Then (4.2) (which is
Theorem 1.3 in [4, p. 191 J) follows. I

LEMMA 4.2. Let p > 0, I ~ 1, and let L be the least even integer ~ 21p and
p be given by (3.29). Let 0< s < 1. Then for n ~ no, P E &1n, and Ix 1:( a,pn,

{ (
X )1/2}P (X )1/2

IP'WI(x) CPn an CPn an

(4.3 )

Proof By Lemma 4.1 with ex = (1/2) + (1/2p), for P E flJ" and x E ~,

{ (
X)1/2}P (X)I/2 (n)p (t)1/2IP'WI(x) CPn - CPn - :( C - max IPWI P(t) CPn -
an an an tEIRI an

(
n)p+lfoo

:(C1 an -00 IPWIP(t)dt, (4.4)

by Theorem 2.4. Now we apply this to

L ( x t)P(t) Kn v, -, - E &1n + Ln'
apn apn

where P E &1n, and Ix 1:( apn is fixed. Let us set

n-l

K~(v, x, t):= L PJ(v, x)pj(v, t).
j~O

640/65/3-6
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Then (4.4) yields

LUBINSKY AND MTHEMBU

I

' L( X X) L-l ( X X) ,( x X)/ IPP(x)Kn v,-,- +P(x)LKn v,-,- Kn v,-,- apn
apn apn apn apn apn apn

{ (
X )1/2}P (X )1/2

X W(x) CPU+Lln -- CPU+Lln--
aU+Lln aU+L)n

Dividing by K;;P (v, x/a pn , x/apn)-n LP and using (3.3), (3.6), and (3.9),
yields for P E f!lJn and Ix I~ apn,

{ (
X)1/2}P (X )1/2

X W(x) CPn - CPn-
apn apn

(4.5)

by (3.26) and as Lp ~ 2. Next, we note that by Bernstein's classical
inequality [1], for Ix/apnl < 1,

Then (4.5) and (3.25) yield, for Ixl <apn ,

{ (
X)1/2}P (X )1/2

IP'WI(x) CPn an CPn an
. , ,.,

{ ( X)I/2}P (x)1/2(n)Pj (X)2/-P/2+ C6 IPWI(x) CPn an CPn an an 1- a
pn

(4.6)
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say. Next, note that for Ix I< aspn ,

qJn (~) 11 - C:J 2

1-
1

~ qJn C:J' 1-C:J 2

1-I (by (3.6»

= 1+ [T(a n ) II-C:J2 IJ- 1

Since

!1-C:J2!?11- (:s::rl? C7/T(an ),
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by (3.30) of Lemma 3.7, with A = 1. Together with (4.6), this yields
(4.3). I

Proof of Theorem 2.3. Now let 1=1 and p be given by (3.29), and let
O<s< 1. Then for n?no and Ixl ~aspn,

f
apn (X t)K~ V,-,- dt
-apn a pn apn

=apnf K~(V,~,u)du
-I apn

(by (3.28))

, (
X )21 1/2 ( X )1/2 (X)I/2

~nan 1- a
pn

~nanqJn a
pn

~nanqJn an '

since /1-(x/a pn f/?C/T(an»n-2
, and by (3.6). Then we deduce from

(4.3) that

f
apn (n )P ( x t)C2 -IPWIU) K~ v,-,- dt
-apn an apn apn

~ fapn
2 ( X t) ,K n V,-,- dt

-apn apn apn
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for n ~ no, P E f?J", and Ix I~ aspn ' Applying Jensen's inequality yields

Integrating for x from -aspn to aspn ' and using

f
apn (X t) I ( X)2\-1/2K2 V- - 1- - dx
-a

pn
n 'apn ' apn apn

=apnf K~(v,u,_t_)11-u2 1- 1
/
2 du

-I apn

(see (3.27) and (3.25)), we obtain

for all P E f!lJ". Here we may choose s E (0, 1) so that

spn=s3(1 +L)n=Sn,

with S> 1. Then (3.13) yields (2.13). I

Proof of Theorem 2.2. First, (2.8) is the special case ljJ(t) = t of (2.13).
Since



MARKOV-BERNSTEIN INEQUALITIES

and

(see (3.5)), we can then deduce (2.9). Since

~n (~J 1/2 ~11 - C:JT/2,

(2.10) also follows. I
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